博客
关于我
机器学习笔记-2.模型评估与选择之比较检验
阅读量:639 次
发布时间:2019-03-14

本文共 851 字,大约阅读时间需要 2 分钟。

比较检验是评估机器学习模型性能的重要方法,在模型选择和性能分析中起着关键作用。本文将从定义、流程以及应用场景四个方面深入分析比较检验的原理和实践。

1. 比较检验的概念与意义

比较检验的核心在于分析不同模型或同一模型在不同设置下的性能表现。其意义主要体现在:

  • 模型选择:帮助确定最佳模型配置。
  • 模型性能评估:比较不同模型在特定任务上的表现。
  • 模型泛化能力:判断模型在训练集之外的应用效果。

2. 比较检验的流程

比较检验通常包括以下几个关键步骤:

  • 实验设计:明确实验方案,包括实验组和对照组的划分。
  • 数据采集:收集足够的测试数据,确保统计有效性。
  • 数据分析:运用统计方法评估不同模型的性能表现。
  • 3. 统计假设检验的应用

    在分类任务中,常用的统计假设检验方法包括:

    • 二项检验:适用于只有一个测试样本或多个样本的情况。
    • t 检验:用于处理多个测试样本和小样本情况。

    单个学习器的检验

    假设你有一个分析模型,希望评估其泛化性能。你可以采用二项检验:

    • 假设:模型泛化错误率小于等于预期值。
    • 检验方法:通过测试样本中的误差率,并对比临界值,判断是否拒绝原假设。

    多个学习器的检验

    对于两个学习器A和B的性能比较,可以采用t检验:

    • 步骤
    • 计算每个学习器在每个折中的测试误差。
    • 分析误差差异,计算均值和方差。
    • 进行t检验,得出是否存在显著差异。

    需要注意的是,交叉验证结果可能存在重叠,影响假设检验的有效性。这时可以采用"5×2交叉验证"以确保独立性。

    4. 训练器间的性能比较

    比较不同训练器的常用方法包括:

    • t检验:评估平均性能差异。
    • McNemar检验:分析单次测试误差的差异。
    • Friedman检验:处理多个方法的比较,适合非参数检验。

    每种方法都有其适用场景和假设条件,选择合适的检验方法对研究效果至关重要。

    末段:在实际应用中,选择合适的比较检验方法需要综合考虑实验设计、统计假设以及具体任务需求。科学合理的比较检验流程能够为模型的性能评估提供可靠的数据支持,这对于模型的优化和实际应用具有重要意义。

    转载地址:http://xkroz.baihongyu.com/

    你可能感兴趣的文章
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NiuShop开源商城系统 SQL注入漏洞复现
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP、CV 很难入门?IBM 数据科学家带你梳理
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP入门(六)pyltp的介绍与使用
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
    查看>>